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Figure 1. Demeter is a parametric model that is trained on real-world data. It encodes plants into shape, topology, articulation, and
deformations, providing a realistic, compact representation that can generalize to many species.

Abstract

Learning 3D parametric shape models of objects has gained
popularity in vision and graphics and has showed broad
utility in 3D reconstruction, generation, understanding, and
simulation. While powerful models exist for humans and
animals, equally expressive approaches for modeling plants
are lacking. In this work, we present Demeter, a data-driven
parametric model that encodes key factors of a plant mor-
phology, including topology, shape, articulation, and defor-
mation into a compact learned representation. Unlike pre-
vious parametric models, Demeter handles varying shape
topology across various species and models three sources
of shape variation: articulation, subcomponent shape vari-
ation, and non-rigid deformation. To advance crop plant
modeling, we collected a large-scale, ground-truthed dataset
from a soybean farm as a testbed. Experiments show that
Demeter effectively synthesizes shapes, reconstructs struc-
tures, and simulates biophysical processes. Code and data
is available at our project page.

1. Introduction
Crop plants are essential to life on Earth and human well-
being. Food crops such as rice, maize, and soybeans form the
foundation of global agriculture and feed billions of people;
industrial crops supply crucial raw materials for manufactur-
ing; tree crops produce oxygen, provide habitats, and help
maintain ecological balance. Reconstructing, understand-
ing, and modeling plants with computer vision opens path-
ways to enhance crop yields, monitor environmental health,
and drive agricultural innovation. A critical step toward this
goal is establishing a realistic, flexible, expressive, compact,
and preferably data-driven morphological model for plants.
While powerful parametric models [37, 45, 88] exist for hu-
man forms and quadrupedal animals, there is currently no
equally expressive model for plants.

Our goal is to bridge the gap by building a compact para-
metric model capable of representing, reconstructing, ani-
mating, and simulating plants of a given species. To this end,
we present Demeter, a novel, data-driven, category-based
parametric model that encodes key factors driving variations
in 3D plant morphology, including topology, articulation,
shape variations, and non-articulated deformations (Fig. 2).
The articulations of the plant body are modeled in a kine-
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Figure 2. The Demeter Model consists of four parametric components: (a) topology 𝚪, a tree-structured graph that stores the binary
connection relationship between plant-part nodes; (b) articulation parameters θ defining each node’s relative position to its parent, using
quaternions for rotation and 1D translation; (c) shape parameters β, representing leaf variance via principal component coefficients, learned
from 2D leaf scans; (d) deformation parameters γ, learned from 3D leaf point clouds and fixed 2D shape parameters β, controlling the 3D
skeletons of leaf and stem. Here the gray, orange and green nodes represents root, stem and leaf respectively.

matic tree structure, with nodes representing elements of the
plant and edges encoding joint angles that define the rela-
tive orientation between connected segments. We represent
shapes and deformations of each leaf and stem using trian-
gular meshes to ease reconstruction and simulation, where
vertex locations are parameterized by Catmull-Rom spline
curves. Although these shape and deformation parameters
are high-dimensional, we observe—similar to findings in
human and animal modeling—that their variations lie pri-
marily in low-dimensional manifolds. Inspired by this, we
fit and learn a compact linear space using principal com-
ponents, significantly enhancing the model’s compactness
without compromising expressiveness.

The quality of a learned shape model depends on the
scale and representativeness of our training data. To cap-
ture real-world variations, we collected 3D soybean samples
from a farm in Illinois over an entire growing season, cap-
turing around 600 plants from multiple genotypes across
all life stages—from germination to pod formation. Un-
like lab environments, our row-crop farm samples minimize
environmental discrepancies. We performed dense 3D re-
constructions using a Gaussian splatting pipeline, manually
corrected missing parts, and selected over 300 plants for
detailed leaf and stem annotation. These annotated recon-
structions trained the Demeter model for soybeans. Ad-
ditionally, we used this dataset to develop benchmarks for
2D/3D semantic segmentation and 3D morphological shape
reconstruction from images or point clouds.

We train Demeter for various species across different 2D
and 3D datasets, including the aforementioned new soy-
bean data. We rigorously evaluate the learned Demeter both
qualitatively and quantitatively, testing its efficacy on tasks
such as multi-view and monocular reconstruction, as well as
downstream applications like photosynthesis and stomatal
conductance simulations. Accurate plant morphology, as
modeled by Demeter, enables detailed simulations for ana-
lyzing crop productivity, demonstrating its practical impact.
Unlike conventional 3D models, Demeter provides a com-
plete parametric morphological model, supporting diverse
biophysical simulations and advancing scientific discovery.

To foster collaboration, we will open-source a Demeter-
based platform, inviting vision and plant phenotyping re-
searchers to create and share models of various species.

Our contributions are: 1) We introduce Demeter, a data-
driven parametric model for plant morphology. 2) We
demonstrate Demeter’s capabilities in reconstruction, and
simulation for multiple crop plant species. 3) We present a
new dataset with over 300 soybeans, featuring 3D geometry,
part segmentation, and topology annotations.

2. Related Works
Procedural Shape Procedural models aim to represent
geometries by a series of programmatic operations to
construct the geometry. They have been used exten-
sively in computer graphics to generate building exteri-
ors [33, 53, 54, 76] and interiors [16, 46, 49, 63], natu-
ral landscapes [8, 29, 52, 62], and entire cities [31, 56].
Most existing work on plant models is hand-crafted or pro-
cedural, incorporating biological knowledge to simulate the
morphology of leaf [32, 47, 51, 72, 75] or the real growth
of the plant [17, 34, 39, 59, 60, 85]. While these models
yield realistic 3D outputs, their complex symbol-geometry
relationship makes inverse modeling (e.g., estimating model
parameters from images) challenging. In contrast, our model
uses simple geometric transformations of parts (leaves and
stems), making it easier to fit sensor observations.

Learning-based Parametric Shape To overcome the lim-
itations of rule-based models and enhance expressiveness,
researchers have used statistical learning to derive paramet-
ric models from real-world data, notably in the study of
human body models [1, 2, 4, 13, 23, 45, 58, 81]. The
most representative work is SMPL [45], which inspired our
use of learned linear model. Unlike SMPL, which has a
global dependency issue, Demeter learns separate, inde-
pendent local shapes, offering greater flexibility to handle
intra-species variations. The success of learned paramet-
ric models has also expanded to domains such as human
faces [37], hands [65], quadrupedal animals [10, 15, 87, 88]
and leaf [9]. Nevertheless, most current models focus on
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Figure 3. Demeter model parameters. (a) Articulation includes scale 𝑠, which controls the size of the component (e.g., stem length);
position 𝑑, which controls the location of the joint node relative to its parent; and quaternion angle τ , which controls the relative rotation.
(b) The mean template learned from 2D leaf scannings. (c) The shape parameter encodes the location of contour points, which defines the
inner points of the leaf and serve as joints to deform the leaf and stem. (d) Deformation γ represents a grid of Catmull-Rom control points
to manage shape and articulation-independent deformation, such as leaf curling. (e) An illustration of the mapping between the leaf shape
control points and canonical UV space.

fixed topology and have not been applied to plant, which
is still dominated by procedural or grammar-based models.
Recent works [9, 12, 22, 28] starts to build on the paramet-
ric models of leaves but fail to model whole plants, or do
not disentangle shape and deformation. Demeter aims to
close this gap, allowing plant morphology to benefit from
real-world data and statistical learning.

Inverse Parametric Shape Modeling Methods for recon-
structing complete 3D plant shapes generally rely on inverse
parametric modeling, especially inverse procedural model-
ing (IPM). IPM relies on fitting parameters of a procedural
model based on structural similarity with the input observa-
tions. This approach has found success in fitting point cloud
data [20, 21, 43, 71] and interactive user inputs [39, 44, 48].
To tackle reconstruction from single images, Li et al. [35]
and SVDTree [38] train models (on procedurally generated
data) to predict bounding volumes and then fill the vol-
umes using space colonization [55]. These works focus on
tree plants, and often ignore fine-grained leaf details. With
Demeter, we aim to provide a plant morphology model that
can accurately represent many kinds of variation in plant
shapes while being conducive to inverse modeling due to its
data-driven, primitive-based structure.

General 3D Reconstruction on Plants A number of
works have investigated the use of generic reconstruction
methods to model plant shapes. The methods used include
multi-view stereo [73, 74, 78, 79, 86] and neural radiance
fields [5, 25, 66, 70]. However, without incorporating shape
priors, such methods struggle outside clean lab settings due
to plants’ thin structures and heavy occlusion. Demeter in-
corporates prior knowledge and data-driven models to con-
strain the solution space for 3D reconstruction.

3. Method
Our parametric model, Demeter, is illustrated in Fig. 2. Like
parametric models for humans and animals [45, 88], it de-

composes the mesh into shape vectors and deformation vec-
tors. However, Demeter additionally encodes the variable
structural topology of plant components. We fit species-
specific Demeter models from real-world 3D scans and learn
linear bases of shape and deformation. In the following
sections, we detail the formulation and parameterization
of Demeter (Sec. 3.1), describe the procedure for learn-
ing Demeter-Soybean from real-world data (Sec. 3.2), and
finally demonstrate how to use learned Demeter models for
image-based and point-based 3D reconstruction (Sec. 3.3).

3.1. Demeter Plant Model

Demeter is a model that represents each plant’s shape with a
set of parameters that uniquely depict the plant’s vegetative
morphology.

(V,F) = M(𝚪, θ,β, γ), (1)

where (V,F) are the output vertices and faces, respectively;
𝚪, θ,β, γ represent topology, articulation, shape, and non-
articulated deformation, respectively. In essence, Demeter
is a function M : Z |𝚪 |

2 ×R |θ |× |β |× |γ | → R3×|V | ×Z3×|F | that
maps a set of parameters to a triangulated plant mesh. Deme-
ter also a learn a compact representation 𝚽 = {𝚽𝑠 ,𝚽𝑑}
about shape β and deformation γ for each species. Specif-
ically, given a Demeter model M, we calculate vertices of
the plant using the following equation:

v 𝑓 = T(θ; 𝚪) · D(v𝑡 + S(β);γ) (2)

where v𝑡 is the vertices location of the templates, learned
from the mean shape of each organ; vf ∈ V is the final
location of the deformed plant; S(β) represents the shape
(grid points) offset of each part that v𝑡 resides in; D(v;γ)
denotes a shape-independent deformation; T is composed
of rigid + scale transformations along the kinematic chain
defined by 𝚪, parameterized by the articulation θ. Next, we
describe each element of Demeter in detail.



Topology Unlike in human or animal models, instances
within the same plant species can have significantly different
topology. We represent the plant topology 𝚪 as a tree data
structure of 𝑛 = 𝑛𝑙 + 𝑛𝑠 + 𝑛𝑜 nodes, each representing an
individual part of the plant, e.g. a leaf or stem. We currently
omit other structures (e.g. flowers and fruit) for simplicity.
Each node 𝑖 has a type tp(𝑖) ∈ {leaf, stem} and is connected
to its parent pa(𝑖) ∈ Z (except the root).

Articulation The articulation is represented as a set of
per-node joint state parameters θ = {θ𝑖}𝑛𝑖=1, where each
θi = (τ𝑖 , 𝑑𝑖 , 𝑠𝑖) represents the rotation quaternion τ𝑖 ∈ R4,
path length 𝑑𝑖 ∈ [0, 1] and scale 𝑠𝑖 ∈ R+ of its canonical
space relative to the local coordinate system of its parent
stem pa(𝑖), as shown in Fig. 3 (a). The root node serves
as the origin. For vertex v belonging to 𝑖-th component,
a forward kinematic chain will be computed, in which the
affine transform T of each part is computed through affine
composition from the part to the root:

T𝑖 (θ; 𝚪) =
∏

𝑖′∈ans(𝑖)
T(τ ′

i , d
′
i , s

′
i ) (3)

where T(τ ′
𝑖
, 𝑑′

𝑖
, 𝑠′

𝑖
) is an affine transform from the parent

pa(𝑖) to current node 𝑖 and ans = {𝑖, pa(𝑖), pa(pa(𝑖)), ...}
denotes the ordered set of ancestor nodes of 𝑖 (the kinematic
chain). Details see Fig. 3 (a).

Shape The shape parametersβ = {β𝑖}𝑛𝑙+𝑛𝑠𝑖=1 define the off-
sets to the template shape in the canonical space for each
organ instance, assuming no 3D deformations. This is con-
ceptually similar to the T-pose for humans, depicting the
intrinsic identity-preserving shape factor. For stems, the
template is parameterized as a unit length cylinder with
𝑚𝑠 uniform control points (also as joints here) on the axis.
And the shape parameter β only controls its thickness. For
leaves, the template is a 𝑚𝑙1 × 𝑚𝑙2 2D grid enclosed by
a left and right contour learned from the mean of the 2D
leaf scannings. The grid points of each horizontal grid line
serve as the control points of a Catmull-Rom curve [11],
whose control points always lie on the curve, making it eas-
ier to interpret and manipulate than other parametric curves,
such as Bezier curves [18]. To further reduce dimensional-
ity, we compress the parameters by learning a linear model
𝚽𝑠 ∈ R2𝑚𝑙1𝑚𝑙2 ×|β | , such that 𝚽𝑇

𝑠 β represents the offset for
two contour curves, where |β | ≪ 2𝑚𝑙1𝑚𝑙2 . We learn the lin-
ear model 𝚽𝑠 by running PCA over thousands of 2D scans
of leaf (Sec. 3.2). This provides a formal definition of shape
offset:

v𝑡 + S(β) = 𝚽𝑇
𝑠 β + v𝑡 , (4)

For non-grid surface points, we use the analytical Catmull-
Rom spline interpolation based on control points. We refer
readers to the supplement for more details. Fig. 4 illustrates
the learned shape model for leaf of several species.

Deformation Shape and articulation define internal fac-
tors of vertex geometry, while external forces like wind,
gravity, and contact cause deformations. Modeling these
deformations is crucial for biophysical processes (e.g., pho-
tosynthesis, growth). Directly controlling vertex locations
is inefficient and unrealistic, as real-world deformations typ-
ically obey constraints like length and area preservation.

To this end, we turn the joints of leaf into a 2D skeletal
structure to drive the 3D deformation. This gives us a fixed
topological structure, with one “main vein” in the middle and
multiple horizontal “sub-veins”. These veins comprised a
chain structure as shown in Fig. 3 (c). Moreover, these joints
along with the contour points naturally form a quadmesh for
each leaf, which we can easily subdivide and triangulate.
For stems, we directly connect all joints into a 1D skeleton.

We could use the joint state along the skeletal structure
to encode deformation. For the 𝑗-th control point on the 2D
skeleton, a joint angle ψ 𝑗 indicates its rotation relative to
its parent node. We use forward kinematics to convert the
angles into deformed 3D locations:

D(v 𝑗 ;γ𝑖) =
∏

𝑗′∈ans( 𝑗 )
T(τj′ , dj, 1) · vj, (5)

where v 𝑗 is the input 3D vertex location before deformation
in node 𝑖, ans( 𝑗) denotes the ancestors of control point 𝑗 ,
T is the rigid transformation corresponding to each joint
angle, and 𝑑 𝑗 is the shape-defined skeletal distance between
control point 𝑗 and its parent 𝑑 𝑗 . Such deformation enjoys
many benefits: 1) strong local rigidity preservation, mak-
ing leaf area and stem length stay roughly unchanged; 2)
ease of calculation, 3) ease of compression due to the spa-
tial smoothness of the joint angles. Fig. 3 (c) depicts the
deformation process.

Each leaf has 1 main vein, and each main control points
has 2 sub-veins. The deformation parameter count is
2𝑚𝑙1𝑚𝑙2 since each control point has 2 degrees of freedom.
Inspired by the success of FLAME [36] in compressing
expression-related deformations, we again adopt a linear di-
mensionality reduction model to represent deformation as
𝚽𝑇

𝑑
γ, where 𝚽𝑑 ∈ R2𝑚𝑙1𝑚𝑙2 ×|γ | such that 𝚽𝑇

𝑑
γ approxi-

mates the entire deformation field with |γ | ≪ 2𝑚𝑙1𝑚𝑙2 . We
learn 𝚽𝑠 by running PCA over real-world data, later de-
scribed in Sec. 3.2.

3.2. Learning Demeter from Real-World Data
Demeter model parameters 𝚽 can be learned using real-
world plant data captured in the crop field, grounding the
learned Demeter model with realistic in-the-wild variations.
To demonstrate this, we collect multi-view field data to re-
cover complete geometry, scan 2D leaf images, employ an-
notators to label each plant component, and finally acquire
a clean topology 𝚪 (see Fig. 8). The shape parameter basis
𝚽𝑠 and joints 𝚽 𝑗 is then learned by fitting contours from
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Figure 4. PCA coefficients of leaf shape. We visualize the mean shape and the one of the principal components of leaf for several species
in (−2𝜎, 0, 2𝜎). For 3D deformation, we show the first and last few components for soybean.
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Figure 5. Reconstruction from single image. One2345++ gener-
ates a coarse shape but fails to capture details. Meshy reconstructs
a realistic plant but is misaligned with the input image. In contrast,
our model is complete and faithful to input.

Topology Stem Deform Leaf Shape Leaf Deform

Po
si

tiv
e

O
rig

in
al

N
eg

at
iv

e

Figure 6. Parameter Interpolation. We could explicitly change
the overall shape and topology while keeping the identity. We
apply the same changes for all nodes for better visualization, but in
practice we could manipulate each instance individually.

2D leaf scans using PCA. The deformation parameter ba-
sis 𝚽𝑑 is derived by fitting real-world 3D deformation data
from annotated scans, followed by structured joint optimiza-
tion. We refer to our model as Demeter-Soybean. Note that
this entire process has little species-specific design and can
therefore generalize to other plant species.

Data Collection and Processing Most 3D plant scans for
phenotyping are conducted in controlled lab environments,
which may lack the realism and variability of real-world
field conditions. To address this issue, we created a custom
annotated 3D soybean dataset with 600 soybean samples
of various growth stages from a smart soybean farm. Using
these samples, we captured over 600 multi-view RGB videos
with a GoPro in both indoor and outdoor settings.

For 3D geometry extraction, we first applied structure-
from-motion with Hloc [67, 68] to determine camera poses.
We then used 4DGS [77] to reconstruct dynamic plants af-
fected by wind. Although 4DGS captures high-quality ren-
derings and motion, it lacks precision in surface geometry.
To address this, we set the 𝑡 = 0 and freeze movement to
render a set of static multi-view images. We then apply
2DGS [26] on these images to extract a high-quality mesh.

The reconstructed mesh sometimes had missing parts,
particularly stems, which we manually corrected. We also
annotated instance segmentation and topology to provide
ground-truth data, as shown in Fig. 8. These annotations are
essential for training the deformation model and will serve
as benchmarks for 3D reconstruction.
Learning Shape Basis from 2D Data We derive the shape
parameter basis, 𝚽𝑠 from real-world 2D leaf scans in the
FGLIR [3] dataset and Folio dataset [61]. All images are
calibrated to have accurate metric scale.

To extract the contours, we first annotate two key points
on each leaf—the base (where the leaf connects to the stalk)
and the tip, and optionally some keypoints in the middle.
These annotations enable us to align each leaf along the x-
axis. Second, we extract the leaf mask using SAM2 [64] and
extract the entire contour from the mask. Third, we divide
the contour into two parts according to the keypoints.

Next, we construct the inner points of a leaf by dividing it
into a grid with 𝑚𝑙1 ×𝑚𝑙2 control points given the contours.
For a simply connected leaf with general shapes, we first
numerically map the control points from canonical UV space
to each 2D leaf scanning, and then learn the linear model
from these data. Inspired by [69], we model this problem
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Figure 7. Reconstruction from 3D point cloud. The results show that our model fits the input more accurately than the baselines.

as a unique mapping 𝜑 : Ω → Ω′ between UV domain Ω′

and leaf domain Ω. Specifically, we define the boundary
mapping 𝑏 : 𝜕Ω → 𝜕Ω′ by mapping the left/right contour
of the leaf to the left/right contour of a circle, and solve
Laplace equation

Δ𝜑 = 0, s.t. 𝜑|𝜕Ω = 𝑏, (6)

to get the mapping 𝜑 and its inverse 𝜑−1 numerically, form-
ing a smooth bijective mapping (Fig. 3(e)). Particularly, for
some oval leaves, such as soybean, whose contours have at
most two intersections with the horizontal lines, we could
simply build this mapping by linearly interpolating between
each pair of intersections, and the positions of these control
points are also linearly dependent on the shape parameter β.
Fig. 3 (c, e) illustrates how a leaf shape is controlled by such
contour curves.

Finally, we perform PCA on these control points, re-
sulting in a linear model 𝚽𝑠 ∈ R2𝑚𝑙1𝑚𝑙2 ×|β | capturing the
variation in shape. The PCA components of soybean are
visualized in Fig. 4.
Learning Deformation Basis from 3D Data Unlike leaf
and stem shapes, which can be observed directly from 2D
scans, extracting deformation is challenging due to entangle-
ment with articulation and shape factors. Thus, we design
a scheme to disentangle these factors through joint opti-
mization, enabling us to learn the deformation basis 𝚽𝑑 .
Formally, given the input 3D point cloud collection, P𝑖...𝑁 ,
where 𝑁 is the number of input point cloud, ground-truth
annotated topology, 𝚪𝑖...𝑁 , semantic and instance labels,

tp𝑖...𝑁 , and pretrained shape basis, 𝚽𝑠 , our goal is to esti-
mate the articulation parameters, θ𝑖 , and shape parameters,
β𝑖...𝑁 . Additionally, we aim to estimate γ𝑖...𝑁 , the dense,
articulation- and shape-independent deformation for each
plant, which will be used to train the PCA model 𝚽𝑑 . We
formulate this as an energy minimization problem:

min
γ ,β,θ

CD(P, {T(θ; 𝚪) · D(v𝑡 + S(β);γ}∀v𝑡 ) (7)

where CD is Chamfer distance, v𝑡 represents canonical tem-
plate vertex, 𝚪 is input topology, S(β) is the shape model
in Eq. 4 and D(v;β) is the deformation function in Eq. 5
and 𝑇 (θ, 𝚪) is the kinematic articulation in Eq. 3.

Joint inference is challenging due to nonlinearity and
complex forward kinematics. Inspired by prior work [42,
82], we adopt a multi-stage approach. For each segment, we
first fit a coarse shape parameter, β̂, and estimate its rigid
pose in world coordinates without articulation constraints
(e.g., leaves detached from stems). Using this pose, we per-
form forward kinematic fitting to incorporate articulation,
obtaining an initial model, θ̂. Deformation is initialized to
identity, i.e., D(·; β̂). With these initializations, we jointly
optimize the energy in Eq. 7, resulting in our final estimation
as shown in the right of Fig. 8.

Finally, we learn the linear PCA basis 𝚽𝑑 from the real-
world deformations β1...𝑁 to compress them into a compact
space without loss of expressiveness, shown in Fig.4.
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Figure 8. Demeter-soybean data collection process. We collect around 600 monocular RGB video of soybean in the field, and run a
Gaussian Splatting based multiview reconstruction pipeline to get the mesh. After that, we manually annotate the instance segmentation
and the topology, and fit this ground-truth data with our Demeter parametric model. A similar process can be adapted to other species.

3.3. 3D Plant Reconstruction with Demeter
Demeter encodes strong morphological priors about the
plant. Inspired by the success of SMPL for human re-
construction [19, 30], we investigate the use of Demeter
parameters for multi-view and single-view reconstruction.

Multiview Reconstruction Using multiview images, we
first recover the point cloud with 2DGS, like in Demeter
training. However, unlike before, there is no ground-truth
instance mask or topology annotation available during real-
world inference. Hence, we adopt a three-step strategy.
First, we perform instance segmentation on the recovered
3D point cloud using a PointTransformer-based network.
Next, we infer the topology based on a minimum spanning
tree. Finally, we fit parameters as in Eq. 7.

We trained a PointTransformer-V3 [80] based instance
segmentation network. Inspired by prior work in 2D [6],
we predict semantic logits for each point and its truncated
inverse distance to the instance boundary. Using the in-
ferred (thresholded) instance boundaries, we remove bound-
ary points to isolate connected components. We then run
DBSCAN with the same threshold to cluster points into in-
dividual leaves and stems. We find this approach effective
and visualizations can be found in the supplementary.

Given the instance predictions, the topology 𝚪 is auto-
matically inferred by finding a minimal spanning tree rooted
from the main stem. Finally, we recover the parametric
model using the described method for Eq. 7.

Single Image Reconstruction We present a baseline
method for single-view plant reconstruction to showcase the
usefulness of Demeter for constraining 3D geometry. Given
a single RGB plant image, we first apply the pretrained
SAM [64] to get the mask, and use Mask-RCNN [24] on
the masked image to predict instance segmentation with 3
classes: leaf, stem, and main stem.

We apply an off-the-shelf depth estimator[83] to lift all
the instances to 3D, and perform simple filtering (details
in supplementary). Then we infer the topology from the
partial point cloud via minimal spanning tree, filtering stems
without any children. Afterwards, we fit the Demeter model

NKSR [27] SimpProc [84] Ours
Smooth √ √

Disentangle √ √

Learnable √ √

Soybean, CD ↓ 0.0030 0.0376 0.0016
Maize, CD ↓ 0.0023 0.0557 0.0071

Soybean, size (KB) ↓ 5785.6 0.2754 3.3750
Maize, size (KB) ↓ 3686.4 0.2236 1.7656

Table 1. Quantitative 3D reconstruction results. We report
the storage size in kilobytes (KB) and Chamfer distance (CD)
in normalized scale. Results show that we fit the input point
cloud better than the procedural method [84]. NKSR outputs
large storage size because it stores dense mesh. We also achieve
comparable CD while using much less parameters. We highlight
the best and second best values.

parameters in the same way as before, but constraining the
shape β and adopt L1 Chamfer distance for robustness.

4. Experiments

We evaluate the Demeter model across several aspects: fit-
ting (Sec. 4.1), reconstruction (Sec. 4.2) and interpretability
(Sec. 4.3). Additional training details and quantitative re-
sults are in the supp. material.

4.1. Fitting

Demeter can represent plants of different species, capturing
individual leaves and stems with high fidelity (Fig. 9). We
select Pepper and Rose from the PLANesT3D [50] dataset,
and Tobacco from the PLANT3D [14] dataset. In Fig. 7,
we compare Demeter with SimpleProc, a baseline procedu-
ral model adapted from CropCraft [84]. SimpleProc has a
compact set of 8 global shape parameters such as average
leaf length and node count, and is fitted by Bayesian op-
timization of the Chamfer distance with the ground truth
point cloud. The results show that the Demeter-Soybean is
much more expressive and can capture the individual leaf
and stem shapes that SimpleProc cannot.

4.2. Reconstruction
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Figure 9. Generalization. We learn Demeter on each species (pepper, rose, tobacco, maize) and validate on novel test shapes. Here we
use the Papaya model to fit the point cloud of Ribes since we lack 2D leaf scans for Ribes and these two species have similar leaves.

Multi-view Reconstruction We train PointTransformer-
V3 on 80 cleaned soybean point clouds and 5 maize point
clouds for the segmentation module and evaluate the recon-
struction pipeline on unseen testing samples. We compare
our approach against SimpleProc [84], an inverse procedural
generation framework based on L-system, and NKSR [27],
the state-of-the-art neural SDF-based 3D reconstruction
pipeline. As shown in Fig. 7 and Tab. 1, our model performs
well on unseen samples, recovering realistic geometry with
high fidelity to the input. SimpleProc is compact but mis-
aligned with the input, while NKSR [27] achieves low error
yet produces a triangular mesh with thick, unsmooth leaves
and stems and poor connectivity, preventing a biophysically
functional plant model.

Single-view Reconstruction We trained Mask-RCNN on
32K images across 60 plants. The qualitative results of
the single view reconstruction are shown in Fig. 5. We
further evaluate the IOU between the rendered mask and
the input as a quantaitive alignment score. From the fig-
ure, we see that Demeter achieves better alignment score
(IoU: 0.328) with the input than Meshy (IoU: 0.206) and
Zero12345++ [40] (IoU: 0.296). In contrast, our baselines
produce less accurate shapes, struggling with the complexity
of plant structures.

4.3. Discussions
Latent Space Visualization The Demeter model allows
explicit control of deformation, shape, and topology while
preserving plausibility (Fig. 6). For topology, we cut
branches to create smaller trees or duplicate subtrees to en-
large them. Leaf and shape deformations are adjusted using
PCA coefficients, and stem deformation is linearly manipu-
lated from straight to curved.

Biophysical Simulation Applications Demeter provides
high-quality, realistic 3D meshes of plants that can be fed
directly into simulation software to predict important agroe-
cosystem variables. We showcase this capability by gener-
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Figure 10. Photosynthesis simulation results. We perform sim-
ulations using Helios [7] on two soybean canopies generated by
repeating Demeter-Soybean models. Left: timeseries of the net
photosynthesis rate for the crop canopy over the course of a day,
in units of 𝜇molCO2/m2/s. Other columns: mesh visualization
where each leaf face is colored according to the rate of photosyn-
thesis over that face (brighter = higher rate).

ating small crop fields by placing fitted Demeter models in a
grid, and passing it to Helios [7] to simulate the response of
the plant to weather variations over the course of a day. The
weather variables were taken from data measured by a flux
tower [57] and include temperature, humidity, radiation, and
other environmental variables. In Fig. 10, we visualize the
output of the photosynthesis rate.

Limitations We assume leaves are 2D shapes and stems
are curves with uniform thickness. This excludes species
with complex structures (e.g., cacti, algae, banyan trees) but
applies to many common species.

5. Conclusion
We presented Demeter, a parametric shape model for plants
using knowledge-based primitives and learning. Using a
real-world soybean dataset, we show that our Demeter-
Soybean model faithfully represents plant shapes and sup-
ports reconstruction and simulation applications.
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of human body shapes: reconstruction and parameterization
from range scans. ACM transactions on graphics (TOG), 22
(3):587–594, 2003. 2

[2] Brett Allen, Brian Curless, Zoran Popović, and Aaron Hertz-
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[71] Ondrej Stava, Sören Pirk, Julian Kratt, Baoquan Chen,
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Sören Pirk. Deeptree: Modeling trees with situated latents.
IEEE Transactions on Visualization and Computer Graphics,
2023. 2

[86] Rongsheng Zhu, Kai Sun, Zhuangzhuang Yan, Xuehui Yan,
Jianglin Yu, Jia Shi, Zhenbang Hu, Hongwei Jiang, Dawei
Xin, Zhanguo Zhang, et al. Analysing the phenotype devel-
opment of soybean plants using low-cost 3d reconstruction.
Scientific Reports, 10(1):7055, 2020. 3

[87] Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and
Michael J Black. 3d menagerie: Modeling the 3d shape and
pose of animals. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6365–6373,
2017. 2

[88] Silvia Zuffi, Ylva Mellbin, Ci Li, Markus Hoeschle, Hedvig
Kjellström, Senya Polikovsky, Elin Hernlund, and Michael J
Black. Varen: Very accurate and realistic equine network.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5374–5383, 2024. 1,
2, 3

https://api.semanticscholar.org/CorpusID:251372887
https://api.semanticscholar.org/CorpusID:251372887


Demeter: A Parametric Model of Plant Morphology from the Real World

Supplementary Material

(0.5, 0)
x

y

(a) Leaf Image (b) UV space

p0
q0

p1
(0.5, 1)q1

Figure 3. Initial value creation for Laplace equation. We map
the boundary value from the template to the leaf according to the
curve length along the contour.

A. Catmull-Rom Curve
Given a shape template with the skeleton and deformation,
we generate a smooth geometry with Catmull-Rom curve.
A general Catmull-Rom curve is composed of K + 2 con-
trol points {p}K+2

i=0 and K + 1 segments. The first and the
last control point p0, pK+1 are virtual control points, which
depend on other control points, i.e. p0 = p1 − (p2 − p1),
pK+1 = pK + (pK − pK−1), as shown in the blue dots in
Fig. 2.

Each segment p(t) in time t ∈ [0, 1] is a cubic poly-
nomial curve and defined by the consecutive four control
points: pi−2, pi−1, pi, and pi+1, and a shape parameter
α. We set α = 0.5 for all segments in this paper. Each
segment satisfies p(0) = pi−1 and p(1) = pi. Assum-
ing p(t) = [pi−2,pi−1,pi,pi+1]C, the blending weights
C(t) are given by:

C(t) =


−αt+ 2αt2 − αt3

1 + (α− 3)t2 + (2− α)t3

αt+ (3− 2α)t2 + (α− 2)t3

−αt2 + αt3

 . (1)

B. Detailed explaination of reconstruction
pipeline

Fig. 1 depicts our single- or multi-image inference pipeline.

3D Geometry We first acquire a point cloud—either by
estimating camera intrinsics and depth with Perspective-
Field and DepthAnything on a single view and lifting to
a partial cloud, or by running SfM+GSplats on multi-view
images to obtain a full cloud.

Parameter Meaning
i the index of node
j the index of control points within a node
M the Demeter Model
F the faces set of Demeter mesh
V the vertices of Demeter mesh
vf the vertices of the templates after shape offset

and deformation, vf ∈ V
Φ the parameter of Demeter model (PCA coeffi-

cient)
Γ topology

pa(i) the parent of the node i
ans(j) the parent of the control point j (within node i)
θ articulation
θi the articulation of node i
τi rotation of node i
di length with respect to the parent stem of node i
si scale of node i
T rigid + scale transformations
T accumulated rigid + scale transformations along

the kinematic chain
β shape
βi the shape parameter of node i
vt the vertices of the templates without deforma-

tion (canonical space)
S shape operation to template vertices
Φs PCA of Shape
γ deformation
dj length with respect to parent of control point j
τj rotation of control point j
vj vertex j in node i with shape offset
D deformation operation to template vertices
Φd PCA of Deformation

tp(i) the type of the node i
n total number of nodes
nl the number of leaf node
ns the number of stem node
no the number of other node except leaf and stem
ml1 the number of vertical control points of a leaf
ml2 the number of horizontal control points of a leaf
ms the number of control points of a stem
Ω UV space
Ω′ leaf space
φ the mapping between UV space and leaf
∂ the boundary of domain
b the mapping between the boundary of UV space

and leaf
P the input point cloud
N the number of input points

Table 1. Explanation of Demeter model notation.

Segmentation We then perform instance segmenta-
tion—using MaskRCNN on the single view and unproject-
ing masks to 3D, or using PointTransformer-v3 (PT-v3) on
the multi-view cloud to predict per-point categories and
inverse-distance scores, removing high-score points and
clustering with DBSCAN.
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Figure 1. Test-time Reconstruction Pipeline. The pipeline transforms the input images to a segmented point cloud, extracts the topology
and fits part templates, and finally outputs the parametric mesh.

Figure 2. Visualization of Catmull-Rom Curve. The alpha pa-
rameter controls the curvature of the curve. We choose α = 0.5
in this paper. The red dots represent the control points and the
blue ones represent the virtual control points, which is necessary
to draw the first and last segment.

Tree-structure recovery We construct a dense directed
graph G over the estimated instances. The edge weights
Wij enforce the constraint that leaves have no children:
Wij = 0 if i = j; Wij = ∞ if cluster i is leaf; other-
wise Wij = rij , where rij is the min distance of any points
from cluster i to j. Then, we compute the minimum span-
ning tree (MST) over G starting from the root stem, which
yields the plant skeleton with the minimum connection cost.

Demeter Fitting Finally, given the estimated topology,
seg, and point cloud, we fit each cluster with a leaf or
stem template, then run a global optimization over all
parts parameters by minimizing Chamfer distance between
the parametric shape and input cloud, producing the final
Demeter parametric mesh.

C. Additional Model Details
Topology Not every arbitrary tree structure corresponds
to a valid plant. Most plants exhibit strong morphological
constraints. For example, each plant may have a maximum
depth or width and exhibit some first-order constraints, in-
cluding the following: leaves cannot possess child nodes,
and for soybeans, top-canopy stems often have a triplet of
leaves as children. We enforce the former constraint by
pruning edges with leaves as parents before constructing the
minimal spanning tree. Incorporation of further constraints
is left for future work.

Articulation Each node, except the root, is connected to
its parent stem. The articulation of each node determines
the rigid transformation relative to the local coordinate sys-
tem at the connection point, as shown in Fig. 9. Given an
arbitrary stem, the coordinate system depends only on the
stem shape and the position of the connection point, and is
independent of the global 6 DoF pose of the stem.

Given ms control points {v}ms
j=1 on the stem, we calcu-

late the relative rotation {Rj}ms−1
j=1 of control points from

each segment vj+1−vj , where j = 1, 2, ...,ms−1, and the
y-axis of R0 is aligned with the first segment. The points
in each segment will have the same local coordinate as their
preceding control point.

Shape We solve Eq. 6 in the main paper to get the bi-
jective mapping between the leaf and template. To get
the initial boundary value, we assign the leaf bottom p0
to q0 = (0.5, 0), and the leaf tip p1 to q1 = (0.5, 1.0).
For other points along the contour, we uniformly map the
boundary value according to the curve length of the point,
as shown in Fig. 3.

D. Additional Results and Visualizations
Overfitting over different species To further show the
generalization ability, we report the overfitting result on



Figure 4. Render Demeter in Blender. We could attach textures (Fig. 5) to the leaf of our Demeter model and dump to rendering engine
such as blender for photo-realistic rendering. From left to right, the image shows pepper, soybean and maize respectively.

Figure 5. The texture extracted from leaf images using bijective mapping. Similarly, we could map the leaf to a square UV space and
get the texture, which can be easily applied to the grid points of our parametric leaf.

Ribes Rose Pepper Tobacco Soybean Maize Smooth Learnable Disentangle
NKSR 0.084 0.095 0.087 0.081 0.174 0.332 ✓
Bezier 0.134 0.066 0.082 0.252 0.159 0.978 ✓
Ours 0.121 0.041 0.054 0.095 0.154 0.649 ✓ ✓ ✓

Table 2. Leaf fitting error for different species. We show normalized CD(× 100). We highlight the best and second best values.

different species using our model, NKSR and Bézier sur-
faces (most common NURBS shape) and report results in

Tab. 2. We didn’t compare with CropCraft[6] since it only
works for Soybean. Our model yields superior reconstruc-
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Figure 6. Qualitative results of reconstructing maize. We show the results of fitting Demeter-Maize models to point clouds from the
Pheno4D dataset (sample 1,2 and 3) and web dataset [7] (sample 4 and sample 5). Different colors represent different instances. The results
show that our model can generalize to species beyond soybeans and capture shape details.
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Figure 7. PCA coefficient of soybean leaf. We visualize the first
several principle component of leaf for soybean in (−3σ, 3σ).

tion plus two key benefits: (1) a PCA-based, learnable
shape prior; and (2) disentangled, interpretable parame-

ters—unlike Bézier curves, whose control points lack phys-
ical meaning and are not even on-surface, our on-leaf and
on-vein control points and PCA basis correspond to bio-
physical/phenotypical traits.

3D Reconstruction Given the ground-truth instance seg-
mentation, we calculate the minimal distance from each
point to other instances, as shown in Fig. 10.

For training, we follow the default configuration in
PointTransformer-V3 but without the mixing strategy. We
set the batch size as 7 and use AdamW optimizer with a
learning rate 0.0025, weight decay 0.02, and trained in 300
epochs. The loss function is composed of the cross-entropy
loss and distance regression loss, i.e. ltotal = lce + 15ldist.

The predicted graph differs from the ground truth due
to both errors in prediction and the inherent ambiguity in
stem connectivity labeling. Additionally, our model cannot
automatically fill in missing stems if the input point cloud
has too many missing parts, as shown in Fig. 13.
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Figure 8. PCA coefficients of Demeter-Maize leaf shape. We
vary the PCA coefficients for maize leaf shape across (−3σ, 3σ)
with respect to the mean shape for all 3 components. The red and
blue points represent the control points for the 2D contour and the
orange curve represents the initial skeleton for 3D deformation.

Figure 9. Local coordinate system on the stem. Each point on
the curve is defined in a local coordinate system determined by the
curve’s intrinsic geometry at that specific point.

2D Reconstruction We train Mask-RCNN with a
ResNet50-FPN backbone starting from the COCO-
pretrained model in detectron2 [4] for 20K iterations. We
use the default configuration but with a batch size of 4 and
lowering the learning rate at 8K and 12K iterations. For
inference, we use a confidence threshold of 0.8.

We apply an off-the-shelf depth estimator [5] to lift all
the instances to 3D. However, the lifted partial 3D point
clouds are usually noisy. Therefore we remove instances if
the total number of points is less than 30 for stems and 100
for leaves, and remove leaves based on the proportions of

Input pcd Dist. Inv Dist.

Figure 10. Truncated Inverse Distance. Given a input point
cloud with instance segmentation, we select the point in every in-
stance and calculate the distance to all other instances for that point
(Middle). Afterwards, we select a threshold and calculate the in-
verse distance and train PointTransformer to predict this value.

their rotated bounding boxes. We also filter out the points
with a high gradient of depth. We infer the topology from
the partial point cloud by building a minimal spanning tree,
and removing the ”bare stems” (stems without any children)
to reduce noise. Afterwards, we fit the Demeter model pa-
rameters in the same way as before. During fitting, we ap-
ply the linear model to constrain the shape parameter β into
(−2σ, 2σ) and adapt the L1 chamfer distance for robust-
ness to outliers. As a result, our model achieves a 2D IoU
of 0.9028 between the mask of predicted mesh and the mask
of ground-truth mesh.

Our model may produce noisy outputs in novel views
because we only apply constraints at the node level, not at
the global topology level. We also did not constrain the
leaf deformation or stem deformation. We leave these as
directions for future improvements.

Remark Both the multi-view and single-image recon-
struction we proposed here is a preliminary exploration of
3D reconstruction using Demeter. Despite showing great
potential, we believe there is significant potential for the
community to develop better reconstruction algorithms in
the future using our parametric model.

E. Detail about Maize Species

We show that the Demeter methodology generalizes to other
plant species by developing a Demeter-Maize prototype us-
ing the Pheno4D [3] dataset, which consists of 84 maize
point clouds capturing different growth stages of 6 maize
plants. We also reconstruct maize from a web dataset [7],
which contains larger maize plants compared to Pheno4D.
To acquire the 2D shape parameterization, we simply ap-
pend an additional scaling axis to the soybean leaf shape
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Figure 11. Qualitative result of point-based reconstruction. Given the unlabeled 3D point cloud as input, our model could faithfully
recover the mesh, semantics, instances and topology.

parameters (Fig. 8), since there is no existing maize leaf
scan dataset. Afterward, we apply the same pipeline as for
soybeans to learn the 3D deformation basis and fit other pa-
rameters. The result (Fig. 6) shows that Demeter can faith-
fully capture maize plant shape.

F. Other Application

Agriculture We showcase this capability by generating
small crop fields by placing fitted Demeter models in a grid,
and passing them to Helios [1] to simulate the response of
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Figure 12. Qualitative result of point-based reconstruction. Given the unlabeled 3D point cloud as input, our model could faithfully
recover the mesh, semantics, instances and topology.

the plant to weather variations over the course of a day. The
weather variables were taken from data measured by a flux
tower [2] and include temperature, humidity, radiation, and
other environmental variables. In Fig. 14 and Fig. 15, we
visualize two outputs of the simulation: photosynthesis rate

and stomatal conductance, which are both directly related
to crop productivity.
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Figure 13. Qualitative result of image-based reconstruction. The depth prediction comes from off-the-shelf DepthAnything [5]

Rendering By extracting texture from the bijective map-
ping mentioned in Eq. 6 in the main paper, we could add
texture to the parametric model and using ray-tracing to ob-
tain realistic rendering.

G. Discussion

The importance of disentanglement In agriculture, dis-
entangled and interpretable shape parameters are vital for
phenotyping & genotyping, biophysical simulation, and
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Figure 14. Photosynthesis simulation results. We perform sim-
ulations using Helios [1] on two soybean canopies generated by
repeating Demeter-Soybean models. Left: timeseries of the net
photosynthesis rate for the crop canopy over the course of a day,
in units of µmolCO2/m2/s. Other columns: mesh visualization
where each leaf face is colored according to the rate of photosyn-
thesis over that face (brighter = higher rate).
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Figure 15. Stomatal conductance simulation results. Stomatal
conductance is a measure of the degree of opening of a plant’s
stomata, which determines the rate of gas exchange (including
carbon dioxide and water) between the plant and the air. Left:
timeseries of the net gas exchange per unit ground area, in units of
mol/m2/s. Other columns: per-face rate-colored visualization.

process-models, as they serve as controllable, measurable
variables in crop scientists’ workflows. In graphics, disen-
tangled shapes allows controllable procedural generation,
texture mapping, and physically driven deformations.

Sensitivity to dataset size The learnable parameters are
PCA components for leaf and stem shape and deforma-
tion. Training these PCA requires only a handful of diverse
plants per species—each plant contributes multiple leaves
and stems—so long as the total # of leaves/stems exceeds
the # of PCA control points per template. We can also
adapt an initial template from related species (e.g., soy-
bean to cowpea or tobacco) and finetune on even smaller
datasets when annotated 3D scans are scarce. For example,
our soybean model uses custom scans and FGLIR leaf data;
Papaya is trained on PLANesT3D; tobacco adapts the soy-
bean template and retrains on Plant3D, producing a viable

model from just 3–5 full 3D samples (with small fidelity
trade-offs).

And training an instance-segmentation network from
scratch typically requires more data (e.g., 50 plants), but
fine-tuning a pretrained model on just a few examples gen-
eralizes well to new species.

Limitation Although our model achieves realistic model-
ing, there are still some limitations. For example, the Deme-
ter does not model skinning, so each part has uniform thick-
ness and the connections between parts are unnatural.

Additionally, we have only demonstrated very basic ca-
pabilities for sample generation, such as copying the sub-
tree from existing soybeans and pasting to random position
and changing its topology. We believe that learning the dis-
tribution of the plant graph in latent space can better handle
this task in the future.
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